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Abstract 

Using a solut ion o f  T rau tman ' s  recently formulated Eins te in-Caf tan  equat ions,  it is shown 
that  if an isolated body  is embedded  in an expanding universe consisting o f  a dus t  o f  
spinning particles, then  the  local gravitational field o f  the body  is inf luenced by spin, even 
when the cosmological constant is neglected. 

1. Introduction 

In an earlier investigation, Einstein & Straus (1945) reached the conclusion 
that the effect of the expansion of the universe has no influence on the structure 
of the local gravitational field surrounding an individual star. Later, Pirani (1954) 
also investigated the same problem but came to a different conclusion by taking 
into account a non-vanishing cosmological constant, namely, that subject to the 
O'Brien-Synge (1952, 1960) boundary conditions, the expansion of space does 
influence the structure of the gravitational field surrounding an isolated body. 
For example, this influence implies that there is a finite maximum radius for 
the orbit of  a particle (near the isolated body) if the particle is not to spiral 
outwards indefinitely. 

Following Trautman's (1972) recent formulation of the Einstein-Caftan 
equations, there has been considerable interest in the effects of  spin on the 
gravitational field. For example, by considering a Friedman type of universe 
with 10 s° aligned neutrons, Trautman (1973) has recently shown that spin 
and torsion may avert gravitational singularities by giving rise to a minimum 
radius of 1 cm. Isham, Salam & Strathdee (1973) showed that the effect of 
interposing f gravity on Trautman's model is that spin-aligned hadronic matter 
will not collapse to densities higher than 1017 gm cm -3. This means an increase 
of the minimum radius from 1 cm to 10 a 3 cm. Prasanna (1973a) applied the 
arguments of Isham, Salam & Strathdee (1973) to finite collapsing objects and 
found that one can obtain a minimum critical mass for black holes. 
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By considering a static perfect fluid of spinning particles in the Einstein- 
Cartan framework, Prasanna (1973b) has also obtained a space-time metric 
which, although similar to Schwarzschild's interior solution, no longer repre- 
sents a homogeneous fluid sphere but one with an equation of state of the 
form p = p + pl/2 + constant. Moreover, for a solution with an equation of state 
Po/Po = ~, the condition that the spin is real sets in a natural restriction on the 
mass to radius ratio. It turns out also that the metrics are not of  class C 1. 

In this paper, we investigate the influence of an expanding universe (with 
A = 0) consisting of spinning dust on the local gravitational field of  a body. 
Such an effect will be of interest in cosmological observations, since these are 
made near the surfaces of isolated bodies such as the earth or the moon. 
Moreover, the situation may throw some light on the problem of formulating 
a suitable definition of the gravitational field in the interior of a continuous 
medium. The analysis is carried out in a Robertson-Walker type of universe 
recently found by Kopczyfiski (1972) in the framework of Trautman's (1972) 
Einstein-Cartan theory. 

Section 2 contains a brief description of Kopczyfiski's (1972) solution, and 
Section 3 deals with the appropriate metric for the local field in the empty 
region surrounding an isolated body embedded in the universe of Kopczyfiski 
(1972). In Section 4 we obtain an approximate solution subject to suitable 
boundary conditions. Finally, Section 5 contains some discussion and 
con clusions. 

2. Kopczyhski 's  Solution o f  the Einstein-Cartan Equations 

Consider a spherically symmetric gravitational field produced by spinning 
dust of particles. Let {0'} (i = O, 1, 2, 3), be an orthonormal frame of 1-forms 
given in terms of the spherical polar coordinates (t, r, O, ~) by 

OO=dt, 01=eX(r,t)dr, O2=eU(r,t)dO, 03=eU(r,t)sinOd ~ 
(2.1) 

The Einstein-Cartan field equations are: 

R i ] -  1R~ i] = -87rti j 
and 

Q~n - ~v julxi n m m n  _ ½8/n Qm]m = --81rS~n (2.2) 

where dj is the canonical energy-momen.tum tensor and is related to the usual 
symmetric energy momentum tensor T q by 

V~ = OJAti -- ½Ds/ (2.3) 

where sij is given in terms of the intrinsic angular momentum d.ensity tensor 
snj by sij = 7?nsnij, where r~ k is the dual form of 0 ~c and t i = rljtli . The symbol 
D derrotes covariant exterior derivative and Q~'n is the torsion tensor. 

In the case of the spinning dust, the symmetric energy-momentum tensor 
T ij = 7"iJr? is taken in the form 

~ij = puiu i (2.4) 
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where p is the density of  the mass of  the dust and u = uiO i is the 1-form of its 
velocity. Assuming a classical description of  spin, we have 

si/ = Siju l and Siju j = 0 (2.5) 

where Sij is the tensor of  density of spin. Spherical symmetry implies that the 
only non-vanishing component  of Si] is the radial component  $23(t, r). 

Putting K = 4rrS23, the field equations (2.2) with the continuity equation 
for spin and an assumption of minimal spin coupling then yield the Robertson-  
Walker type of solution (Kopczyfiski, 1972) 

ds2 = dt2 - K-3/2(t) { 1 _ @ r z  dr2 + r2 d~22 } 

( d ~  2 - 6 0 2  + sin 2 0 &p2) (2.6) 

where the density of  spin K(t) now reduces to a function of t only and satis- 
fies the differential equation 

{KK - - I~  2 + K 4 - AK  8/3 = 0 (2.7) 

where A is an arbitrary constant and a dot denotes differentiation with respect 
to t. The cosmological radius 6~(t) of the universe is related to the density of  
spin by 

[ IA 1-3/2, i fA  4=- 0 
lK(t) t # ( 0  (2.*) 

t 1, i fA = 0 

The nature of the solutions of(2.7)  is determined mainly by the sign of A. In 
the particular case where A = 0, the solution of (2.7) is 

I K(t) I = E/( 1 + -~E 2 t 2) (2.9) 

where E denotes total 'energy'.  (In all cases, the function I K(t) I is bounded 
and never vanishes.) The density of mass t) and the density of spin 1K I are 
related by 

8rrp = E I K i  (2.10) 

and the constant 2/E can be interpreted as the amount of spin per unit mass. 

3. The FieM Near an _Isolated Body 

Consider a spherical empty region (I) of  radius a surrounding a non- 
spinning body of  mass rn centred at the spatial origin r = 0 of  an expanding 
universe of  spinning dust given by the metric (2.6). The coordinates (T, R,  
0, ~o) usually employed in the Schwarzschild exterior metric, 

R / - - R ]  dR2 - dg22 (3.1) 
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are not co-moving and so (3.1) is not a suitable form for a discussion involving 
an expanding universe. Accordingly, following Nariai & Tomita (1965), we 
assume that (3.1) can be transformed into the form: 

d s  2 = e ~ ( t ' r )  d t  2 - -  e ?~(r't) dr 2 - K ( t ) - 2 / 3  r 2 d~,-22 (3.2) 

by means of the coordinate transformation of the form 

T = f ( t ,  r) (3.3) 

R = K ( t ) - l / 3 r  (3.4) 

where (t, r, 0, ~0) are the same as the co-moving coordinates employed in (2.6). 
Now, the transformation (3.3) and (3.4) takes (3.1) to the form 

ds 2= (1 - 2mK1/3/r)  ( f2  d t  2 + ( f , )2  dr 2 + 2 f f '  d t  dr} 

- ( 1 - 2mK1/3/r)-1  {~jK-S/3~22r2 d t  2 + K-2/3  dr 2 _ ~K-5/3~2r d t  dr} 

-- K-2/3r2 dr22 

which is identical with (3.2) provided 

e u = (1 - 2rnK1/3/r) f  2 -- ~(1 - 2mK1/3 / r ) - lK-8 /31£2r2  (3.5) 

e x = (I - 2 m K 1 / 3 / r ) - l K  -2/3 - (1 - 2 m K l / 3 / r ) ( f ' )  2 (3.6) 

and 

3K5/3(1 - 2 m K l / 3 / r ) 2 f f ' + / ~ r  = 0 (3.7) 

where the dots and the primes denote, respectively, differentiation with 
respect to the coordinates t and r. 

In what follows, we assume that the solution for the function f ( t ,  r) of the 
partial differential equation in (3.7), subject to appropriate boundary condi- 
tions to be discussed, gives the metric for the empty region (I) via (3.2)-(3.6). 
The question of suitable boundary conditions is taken up in the next section. 

4. The Boundary  Condit ions and Solut ions  

The problem of formulating suitable junction conditions in general rela- 
tivity has received considerable attention over the years (O'Brien & Synge, 
1952; Synge, 1960; Oppenheimer & Snyder, 1939; Lichnerowicz, 1955; Hoyle 
& Narlikar, 1964; Nafiai, 1965). The difficulty arises from the fact that one 
must consider not only the prevailing physical conditions but also the 
smoothness of the coordinate patches used in covering a space-time manifold. 

In relation to the above, Lichnerowicz (1955) postulated the existence of 
admissible coordinates in which the gravitational potentials are functions of 
class C 1 and piecewise of class C 3, the transformations between systems of 
admissible coordinates being diffeomorphisms of class C 2 and piecewise of 
class C 4. It is interesting to note from Prasanna (1973b) that the effect of 
spin compels one to relax the Lichnerowicz boundary conditions. 

O'Bfien & Synge (I952) derived the following boundary conditions in a 
system of coordinates x ~ (where i, j = 0, I, 2, 3 and c~,/3 = 1, 2, 3) relative to 
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which the non-null boundary E : x ° = 0 is at rest: 

[(I) 1 [(II, ] 
gqa = Lg*J (4.1) 

r,.. 3 
= I. g~t3,o3 (4.2) 

= [ Ti 1 (4.3) 

(I) (1) (I> (l> ] r(II) (II) (II> (II) ] 
gai l~j -- gcq T~ ] = [ gai T~ - goq T? ] (4.3') 

where the symbol [ ] denotes values taken on the boundary E : x 0 = 0 between 
the adjacent regions (I) and (II), and (N) above a quantity refers to its value 
in the region (N), whereN - I or II. In the above, the coordinate x ° can be 
any one of the coordinates x i. If the energy-momentum tensor T / i s  symmetric, 
then (4.1) and (4.3) imply (4.3'). 

More recently, Nariai (1965) and Nariai & Tomita (1965) have considered 
the problem of formulating suitable boundary conditions in general relativity. 
By stipulating that Einstein's field equations constructed from the combined 
metric (defined as a step-function combination of two metrics) should be 
delta-singularities free, Nariai (1965) recovered the O'Brien-Synge conditions 
(4.1)-(4.3) and, in addition, arrived at the following new condition in general 
relativity: 

K i [ i;i] = I¢ [Qj] (4.4) 

the details of  which are given in the Appendix. The new condition (4.4) reduces 
to an identity in admissible coordinates (Nariai, 1965). In previous papers 
(Kofinti, 1972; Kofinti, 1973), we have investigated the new condition (4.4) 
in some detail and it appears to us that the condition may be non-trivial in 
non-admissible coordinates. 

Returning now to our main discussion, in this paper we shall consider the 
solution of the differential equation (3.7) subject to the boundary conditions 
discussed above in (4.1)-(4.3). Corresponding to the coordinate x °, we specify 
the boundary by 

E : x ° - r _ a = O  

since the sphere of Section 3 is of radius a (constant). Identifying the universe 
given by (2.6) with region (II), then from (2.6) and (3.2) the condition (4.1) 
gives 

[e v] = 1, [e x] = 1/K2/3(1 - A a  2) (4.5) 

for all t. In the present case, condition (4.2) is equivalent to 

(nO 
[3~2¢/0r] =[Og~/Or] ( 4 . 6 )  

where oz,/3 = 0, 2, 3 (i.e. a,  ~ 4= 1). Applying (4.6) to (2.6) and (3.2) we have 

[v'] = 0 (4.7) 
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The boundary condition (4.3) also yields 

[K2/3] [.~K/i~ _/~2 _ AK8/3] = 0 (4.8) 

Hence, in view of (2.7), the condition (4.3) is satisfied to at least the order 
0[(K1/3)14].  In Isham, Salam & Strathdee (1973), for example, 6 { m i  n ~ 1013 cm 
and so, by (2.8), Kmax ~ 10 -39 cm -3, which means (4.3) is reasonably satisfied. 

We note also that 

[o )111Or] = 
(4.9) 

(ii) 
log11~Or] = 2Aa/KZ/3(1 _ A a  2) 

and so 

except when 

(I) /ar 4= 0g11, ] [.,(II) 1 [og11/Or] 

[k' l = 2Aa (4.10) 

The above means that, in general, the metrics we are employing here are not 
of class C 1. 

Following the procedure outlined in Nariai & Tomita (1965), we find that 
the solution of the differential equation (3.7) subject to the conditions (4.5) 
and (4.7) is 

e u = 2mK2/3zr(1 - A a 3 / 2 m g l / 3 ) / a 2 F ( z ,  r, t) (4.11) 

e x = azF(z ,  r, t ) /K1/3r (4.I2) 

where 
F(z ,  r, t) = H(z ,  r, t) - aK1/3z(1 - 2mK1/3/r)/2r (4.13) 

and z = z(r ,  t) is a parameter determined by the integral relation 

[ Y') ] 
y 2 / x  =y(z)  exp (z/2) f g d x / x 2 { 1  + (zg/2x)2}l /2 (4.14) 

x 

where x =-r/K 1/3a, y - 1/K 1/3, g =- 1 - 2relax, and y ( z )  is given on the 
boundary x = y (i.e. r -- a) by 

y ( z )  = (2mzZ/a)t /3(1 - AaZ) 1/3 [{(X/[I + 4AaZz2(1 - Aa; ) /27]  + 1)/2} 1/3 

- {(X/[1 + 4AaZz2( l  - Aa2)/27]  - 1)/2} 1/3] (4.15) 

In general, the integral in (4.14) cannot be evaluated in terms of elementary 
functions. Hence, as in Nariai & Tomita (1965), we resort to approximate 
solutions which are valid in subregions of  the (t, r) plane. Assuming for sim- 
plicity that A = 0 and a = 1, we find the approximate solution 

e u = 1 - rnK1/3(2/r - r 2 + 3) (4.16) 

e x = (1 + 2 m K 1 / 3 / r -  2mr2/K1/3)/K 1/3 (4.17) 
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which is valid in the subregion 

r < d  (4.18) 

where 

d 2 = min(1 /mK lIB - 1, 1~2inK y3)  

Finally, in view of  the remarks following equation (4.8), the above approxi- 
mate solution satisfies the boundary condition (4.3)as well. 

5. Discussion and Conclusions 

The approximate solution exhibited in (4.16)-(4.18) suggests that an ex- 
panding universe with spin does influence the structure of the local gravitational 
field surrounding an individual body. Thus, if an astronomical instrument is 
located near the earth (or the moon),  one should, in principle, be able to detect 
the spin effects due to the rest of  the universe assumed to be a continuous dis- 
tribution of  spinning galaxies. Admittedly, such an affect wilt be small, since, 
for matter in bulk, spins are likely to cancel out one another with the con- 
sequent dominance of the effects due to mass. 

In Prasanna (1973b), where static solutions are considered, the observation 
is made that the fact that the metrics are not of  class C 1 may be due to spin 
not affecting the geometry outside a distribution. However, the solution 
exhibited in this paper seems to suggest that  the above observation may not 
apply to non-static solutions. 

As stated in Kopczyfiski (1972), in the model (2.6) employed above, the 
torsion is undefined at the spatial origin r = 0. However, by the very nature 
of  the situation considered in this paper, the origin is not regarded as a 
material point of the universe given by (2.6). Hence the question of  sin- 
gularities at r = 0 does not arise in our discussion. 

Finally, since the new boundary condition (4.4) was arrived at solely on 
the basis of  the usual Einstein field equations, it will be interesting to see 
what happens in the framework of the Einstein-Caftan theory. 
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(; denotes the usual covariant derivative) 

Kij = E O -- ½gi]E 

Ei j= glrEti# 

where Eujr is an expression whose value on the boundary E : x ° = 0 is given 
by 

[Eli# ] = -- I [gmn] [A (tr)m A(0)n - A(03m A(i0n ] 

where 

and 

(0 (Ii) 
A(0)z = P (o t  -- P(0)l 

P(6)l = g*r P~ 

where Fin is the usual Christoffel symbol  of  the second kind and ~ is the 
coupling constant. O/is  an expression whose value on the boundary is given 
by 

[Qj] = _ ¼ [gmn] [ A ( , m ) n S / -  Aql)nS~l  

where 

s'~ (i!~ (m, = T ~ n -  T/n 

The tensor gq is the combined metric tensor whose definable domain is the 
combined region (I) and (II) and is introduced by the relation 

(i) (ti) 
gij = gijOl + gij{¢II 

where 0i = 0 (x°), 0n = O(-x° ) ,  and O(x °) is the step-function defined by 

1, (x ° > o) 
O(x °) = ~, (x ° = o) 

o, (x ° < o) 
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